The Reaction of Aromatic α,β -Unsaturated Ketones with 4,5-Diamino-1,6-dihydropyrimidin-6-ones

Braulio Insuasty* and Mónica Ramos

Universidad del Valle, Department of Chemistry, A. A. 253 60, Cali, Columbia

Jairo Quiroga

Universidad de los Andes, Department of Chemistry, A. A. 4976, Santa Fe de Bogota, Columbia

Adolfo Sanchez and Manuel Nogueras

Universidad de Granada, Colegio Universitario de Jaén, Department of Chemistry, 23071 Jaén, Spain

Norbert Hanold and Herbert Meier

University of Mainz, Institute of Organic Chemistry, 55099 Mainz, Germany Received June 23, 1993

The reaction of 4,5-diamino-1,6-dihydropyrimidin-6-ones 1 with one equivalent of the chalcones 2 leads in an acidic medium to the formation of the 2,4-diaryl-2,3,6,7-tetrahydro-1H-pyrimido[4,5-b][1,4]diazepin-6-ones 3a-m. The structure elucidation of the products is based on detailed nmr investigations including selective ${}^{13}C$ { ^{1}H } decoupling experiments.

J. Heterocyclic Chem., 31, 61 (1994).

The reaction of 1,3-diaryl-2-propenones (chalcones) with ortho-diamines represents a convenient synthesis of condensed 1,4-diazepine systems [1-5]. Alternatively two equivalents of acetophenone derivatives can enter with the diamine such a cyclization reaction [6].

The objective of the present work is the synthesis and characterization of 2,4-diaryl-2,3,6,7-tetrahydro-1*H*-pyrimido[4,5-*b*][1,4]diazepin-6-ones, compounds for which interesting biological and pharmacological properties can be assumed [7,8]. Heating of 4,5-diamino-1,6-dihydro-2-methoxypyrimidin-6-one or 4,5-diamino-1,6-dihydro-2-methylthiopyrimidin-6-one or the 1-methyl derivatives of both with molar quantities of 1,3-diaryl-2-propenones in ethanol in the presence of catalytic amounts of acetic acid generates the desired structures **3a-m** in yields between 89 and 35%. Electron withdrawing substituents R³ like the nitro group enhance the reactivity, electron releasing groups like the methoxy group lower it.

The diamines 1 contain non-equivalent amino groups and could therefore lead to regioisomeric cyclization products 3 and 3'; however, the formation of a single product

Scheme 1

$$R^1$$
 NH_2 R^3 R^4 R^4

Compound 3	\mathbb{R}^1	\mathbb{R}^2	\mathbb{R}^3	R ⁴	Yield (%)	Mp (°C)
a	Н	OCH ₃	н	Н	70	226
b	H	OCH ₃	C1	H	51	224
c	Н	OCH ₃	OCH ₃	Н	35	204-206
d	Н	OCH ₃	NO ₂	Н	89	242-243
e	Н	OCH ₃	NO_2	CH_3	87	208-210
f	Н	SCH ₃	Н	н	71	220-221
g	H	SCH ₃	Cl	Н	76	242
h	H	SCH ₃	OCH ₃	Н	37	198-200
i	H	SCH ₃	NO_2	Н	74	238
j	CH_3	OCH ₃	Cl	Н	54	204-206
k	CH ₃	OCH ₃	NO ₂	CH_3	51	212
1	CH_3	SCH ₃	Cl	Н	70	200-202
m	CH ₃	SCH ₃	NO ₂	Н	75	218

was observed in every case. We assume for the initial step a condensation reaction between the carbonyl group of 2 and the 5-amino group of 1 which should have the higher nucleophilicity in comparison to the 4-amino group, due to the electron withdrawing effect of the amide function [9-12]. In the second step a Michael type addition of the 4-amino group to the CC double bond can take place.

The uv/visible spectra of **3a-m** in methanol contain three to four bands; most characteristic is an absorption maximum in the range of 230-280 nm and a second one shifted towards longer wavelengths (360 $\leq \lambda$ max ≤ 420 nm). The ir spectra show typical bands at 3380-3420 cm⁻¹ and 1620-1635 cm⁻¹ for the N-H and C=N stretching vibrations. A superposition of other coupled C=C vibra-

tions of the ring system is observed for the region of 1600 cm⁻¹.

The direct structure proof of **3a-m** is based on the nmr investigation. The ¹H nmr data are summarized in Table 1. The proton on N-1 gives rise to a doublet ($^3J = 5.6 \pm 0.1$ Hz) indicating the vicinal position of the proton on C-2. The geminal protons on C-3 have a coupling constant $^2J = -14.1 \pm 0.2$ Hz and vicinal couplings of $^3J_{trans} = 6.0 \pm 0.2$ Hz and $^3J_{cis} = 1.4 \pm 0.2$ Hz to 2-H. That generates two doublets of doublets and a hardly resolved triplet in the ABMX spin pattern at 400 MHz in DMSO. The comparison with the measurement for **3j** in deuteriochloroform shows the great influence of the solvent. The coupling between 1-H and 2-H disappears in chloroform; 1-H gener-

 $\label{eq:Table 1} Table \ 1$ 1H NMR Data of 3a-m (δ Values, TMS as the Internal Standard, 400 MHz)

Compound 3	Solvent	1-NH d (s)	2-H t (d)	3-H dd	dd	7-R ¹	8-R ²	2-Ar	4-Ar	
a	$(CD_3)_2SO$	7.68	5.15	2.80	3.71	11.66	3.85	7.05-7.20	7.12-7.51	
b	(CD ₃) ₂ SO	7.77	5.16	2.75	3.75	11.63	3.85	7.05-7.17	7.23 7.53	
c	(CD ₃) ₂ SO	7.56	5.12	2.78	3.66	11.66	3.84	7.06-7.19	6.73 7.50	3.70 (OCH ₃)
d	(CD ₃) ₂ SO	8.04	5.20	2.77	3.89	11.81	3.87	7.04-7.17	7.77 8.03	
e	$(CD_3)_2SO$	8.04	5.13	2.76	3.87	11.80	3.87	6.97 6.98	7.80 8.05	2.13 (CH ₃)
f	$(CD_3)_2SO$	7.78	5.18	2.84	3.71	11.70	2.49	7.04-7.25	7.04-7.55	
_	$(CD_3)_2SO$	7.85	5.18	2.80	3.74	11.70	2.49	7.06-7.19	7.24 7.60	
g h	(CD ₃) ₂ SO	7.67	5.16	2.84	3.67	11.65	2.50	7.08-7.21	6.76 7.55	3.71 (OCH ₃)
	(CD ₃) ₂ SO	8.09	5.21	2.82	3.87	12.19	2.49	7.04-7.17	7.77 8.03	
•	(CD ₃) ₂ SO	7.72	5.17	2.76	3.73	3.34	3.95	7.05-7.18	7.23 7.53	
J	CDCl ₃	5.24	4.85	3.32	3.08	3.40	3.92	7.25-7.35	7.21 7.67	
k	CDCl ₃	5.39	4.85	3.34	3.16	3.41	3.93	7.14 7.14	7.86 8.07	2.30 (CH ₃)
1	(CD ₃) ₂ SO	7.78	5.18	2.82	3.71	3.38	2.56	7.07-7.19	7.24 7.54	
m	$(CD_3)_2SO$ $(CD_3)_2SO$	8.04	5.22	2.85	3.85	3.99	2.57	7.05-7.19	7.76 8.03	

Table 2 $$^{13}\rm{C}$ NMR Data of 3a-m (δ Values, in DMSO-d₆, TMS as the Internal Standard, 100 MHz)

C INVIR Data of Sa-in (0 values, in Divisor 56, 1100 to the															
Comp	ound 3	a	b	c	d	e	f	g	h	i	j	j [a]	k [a]	1	m
	C-2	59.2	59.0	59.4	58.6	58.1	59.6	59.3	59.7	58.9	59.1	61.2	60.2	59.5	59.0
			38.6	38.5	38.7	38.7	39.1	38.8	38.7	38.9	38.6	40.5	40.8	38.8	38.9
	C-3	38.8			154.2	154.4	159.2	157.7	159.0	155.9	156.3	159.0	156.7	157.9	158.1
	C-4	157.5	156.0	157.4		106.5	107.8	107.7	107.8	108.0	106.1	107.4	107.4	107.5	107.7
	C-5a	106.4	106.3	106.4	106.7		162.0	161.8	162.1	161.9	161.0	162.3	162.2	160.3	160.3
	C-6	162.4	162.3	162.5	162.2	162.1	157.3	156.4	158.0	157.9	152.9	153.4	153.8	157.2	156.3
	C-8	154.0	154.1	154.1	154.3	154.0			152.4	152.6	151.1	150.0	150.5	150.6	150.8
	C-9a	152.8	152.9	152.8	153.3	153.3	152.4	152.5			143.4	142.8	146.1*	143.5	143.3
Ar	C_{i}	140.7	139.5	133.4	143.3	140.4	140.4	139.2	133.0	143.3				139.2	146.8*
		143.6	143.4	143.1	146.5	146.6	143.7	143.4	143.5	146.2*	139.5	138.6	139.6		
	$C_{o,m}$	125.9	125.8	112.9	122.9	122.9	126.0	125.9	113.0	122.9	125.9	126.1	123.3	125.9	122.9
	-0,111	126.1	127.5	126.0	125.7	125.7	126.3	127.6	126.0	125.8	127.6	128.1	126.0	127.6	125.8
		127.5	127.9	127.7	126.9	127.0	127.6	127.9	127.9	127.1	127.8	128.2	127.3	127.9	127.1
		127.9	127.9	127.9	127.9	128.5	127.9	128.0	128.0	128.0	127.8	129.0	129.7	127.9	128.0
	_			126.7	126.8	135.8	126.8	126.8	126.8	126.9	126.7	128.3	138.3	126.8	126.9
	C_p	126.7	126.7			146.6	128.4	133.2	159.8	146.7*	132.9	135.1	147.7*	133.2	146.2*
		128.1	132.9	157.4	146.5	20.4	120.4	133.4	55.0	140.7	150.7	15011	21.0		
				55.0					(OCH ₃)				(CH ₃)		
				(OCH_3)		(CH_3)			, ,,		27.4	28.0	28.1	29.8	29.8
	7-R							10 (10.6	12.6		55.3	55.4	14.0	14.1
	8-R	54.1	54.1	54.1	54.3	54.2	12.6	12.6	12.6	12.6	55.1	33.3	JJ. 4	14.0	14.1

Scheme 2

ates a singlet that is shifted by 2.48 ppm to higher field. 2-H and the proton of C-3 in the *trans* position to 2-H show upfield shifts of 0.32 and 0.65 ppm, respectively. The proton 3-H in the *cis* position to 2-H (first column of 3-H in Table 1) is shifted downfield by 0.56 ppm. We assume that the exceptional change in the ¹H nmr spectrum is due to a particular interaction of the relatively acidic 1-NH protons and the basic solvent DMSO.

The ¹³C nmr data of **3a-m** are summarized in Table 2. The great difference in the chemical shifts of the quaternary carbon atoms C-5a and C-9a can be taken as a hint for a push-pull substituted CC double bond in structure 3: however, in order to rule out the isomeric structure 3' we had to perform selective low-power 13C, 1H-decoupling experiments. Both carbon signals are doublets with ${}^{3}J_{CH} =$ 5.4 Hz in the coupled 13C nmr spectra. Irradiation into the proton signal of 2-H leads to a singlet for the signal of C-9a; additionally, the signal of C-5a becomes a singlet by irradiation into the doublet of 1N-H. The carbonyl group (C-6) provokes in the fully coupled ¹³C nmr spectrum a singlet which is not affected by the decoupling experiments. (The exchanging proton 7-H in **3a-i** at $\delta = 11.8$ ±0.4 doesn't lead to any coupling in the ¹³C nmr). Thus the single frequency decoupling experiments are only consistent with structure 3.

Furthermore, another point concerning the constitution of the heterocycles 3 should be mentioned. The ¹³C nmr signals for C-6 and C-8 of the compounds 3a-i are unusually broad and can only be detected in the case of a high signal-noise ratio. This effect cannot be observed for the *N*-methyl compounds 3i-m.

We assume that the intermolecular exchange of the proton on N-7 can include further tautomeric structures. Nevertheless, the lactam form on the left side of Scheme 2 should be the most important one; otherwise greater shift differences for C-6 should be expected for the NH and the NCH₃ compounds **3a-i** and **3j-m**, respectively.

EXPERIMENTAL

Melting points are uncorrected. The ir spectra were obtained in potassium bromide pellets with a Perkin-Elmer 599B spectrometer. The uv spectra were recorded on a Shimadzu UV-160A in methanol. The ¹H and ¹³C nmr spectra were run on a Bruker

AM 400 in DMSO-d₆ or deuteriochloroform. The mass spectra were obtained on a Finnigan M95 spectrograph operating at 70 $_{\rm eV}$

2,4-Diaryl-2,3,6,7-tetrahydro-1H-pyrimido[4,5-b][1,4]diazepin-6-ones **3a-m**.

General Procedure.

A solution of 3.2 mmoles of 1 (4,5-diamino-1,6-dihydro-2-methoxypyrimidin-6-one or 4,5-diamino-1,6-dihydro-2-methoxy-1-methylpyrimidin-6-one or 4,5-diamino-1,6-dihydro-2-methylthiopyrimidin-6-one or 4,5-diamino-1,6-dihydro-1-methyl-2-methylthiopyrimidin-6-one) and 3.2 mmoles of 1,3-diaryl-2-propenone (chalcone) 2 was refluxed in 15 ml absolute ethanol and 1 ml acetic acid for 8 hours. The reaction mixture was cooled down to 0° and the precipitate formed overnight was filtered off. The obtained solid was recrystallized from methanol. The yields and the melting points are summarized in Scheme 1.

2,3,6,7-Tetrahydro-8-methoxy-2,4-diphenyl-1H-pyrimido[4,5-b]-[1,4]diazepin-6-one (**3a**).

This compound had ms: (70 eV) m/z (%) = 346 (100, M⁺), 331 (31, M⁺·-C_{H₃}), 269 (22, M⁺·-C₆H₅), 242 (49, M⁺·-C₆H₅CNH), 140 (23, C₅H₆N₃O₂*), 104 (42, C₆H₅CNH*).

Anal. Calcd. for $C_{20}H_{18}N_4O_2$: C, 69.35; H, 5.24; N, 16.17. Found: C, 69.59; H, 5.44; N, 15.85.

4-(4-Chlorophenyl)-2,3,6,7-tetrahydro-8-methoxy-2-phenyl-1 H-pyrimido[4,5-b[1,4]diazepin-6-one (3b).

This compound had ms: (70 eV) m/z (%) = 382/380 (35/100, M⁺, Cl isotope pattern), 367/365 (15/42, M⁺-CH₃, Cl isotope pattern), 278/276 (14/38, M⁺-C₆H₅CNH), 269 (24, M⁺-C₆H₄Cl), 242 (30, M⁺-ClC₆H₄CNH), 167 (29), 140 (52, C₅H₆N₃O₂+), 104 (21, C₆H₅CNH+).

Anal. Calcd. for $C_{20}H_{17}ClN_4O_2$: C, 63.08; H, 4.50; N, 14.71. Found: C, 62.88; H, 4.69; N, 14.40.

2,3,6,7-Tetrahydro-8-methoxy-4-(4-methoxyphenyl)-2-phenyl-1H-pyrimido[4,5-b[1,4]diazepin-6-one (3e).

This compound had ms: (70 eV) m/z (%) = 376 (100, M⁺), 361 (30, M⁺-C_{H₃}), 272 (29, M⁺-C_eH₅CNH), 238 (68), 140 (25, C₅H₆N₃O₂), 135 (58), 103 (24, C₆H₅CN⁺).

Anal. Calcd. for $C_{21}H_{20}N_4O_3$: C, 67.01; H, 5.36; N, 14.88. Found: C, 66.79; H, 5.30; N, 14.59.

2,3,6,7-Tetrahydro-8-methoxy-4-(4-nitrophenyl)-2-phenyl-1 *H*-pyrimido[4,5-b][1,4]diazepin-6-one (**3d**).

This compound had ms: (70 eV) m/z (%) = 391 (100, M⁺'), 376 (42, M⁺'-CH₃), 287 (28, M⁺'-C₆H₅CNH), 269 (23, M⁺'-C₆H₄NO₂), 242 (23, M⁺'-NO₂C₆H₄CNH), 167 (25), 140 (29, C₅H₆N₃O₂⁺), 104 (24, C₆H₅CNH⁺).

Anal. Calcd. for $C_{20}H_{17}N_5O_4$: C, 61.38; H, 4.38; N, 17.89. Found: C, 61.11; H, 4.30; N, 17.69.

2,3,6,7-Tetrahydro-8-methoxy-2-(4-methylphenyl)-4-(4-nitrophenyl)-1H-pyrimido[4,5-b][1,4]diazepin-6-one (3e).

This compound had ms: (70 eV) m/z (%) = 405 (100, M⁺), 390 (28, M⁺·-CH₃), 301 (28, M⁺·-C₆H₅CNH), 287 (46), 278 (43), 257 (27, M⁺·-NO₂C₆H₄CN), 242 (23), 155 (28), 141 (30), 118 (99, H₃C-C₆H₄CNH⁺), 103 (31, C₆H₅CN⁺).

Anal. Calcd. for $C_{21}H_{19}N_5O_4$: C, 62.22; H, 4.72; N, 17.27. Found: C, 62.50; H, 5.01; N, 17.02.

2,3,6,7-Tetrahydro-8-methylthio-2,4-diphenyl-1H-pyrimido[4,5-b]-[1,4]diazepin-6-one (3 \mathbf{f}).

This compound had ms: (70 eV) m/z (%) = 362 (100, M^+), 347 (32, M^+ -CH₃), 258 (52, M^+ -C₆H₅CNH), 156 (28, C₅H₆N₃OS⁺), 104 (81, C₆H₅CNH⁺).

Anal. Calcd. for $C_{20}H_{18}N_4OS$: C, 66.28; H, 5.01; N, 15.46. Found: C, 65.98; H, 5.30; N, 15.17.

4-(4-Chlorophenyl)-2,3,6,7-tetrahydro-8-methylthio-2-phenyl-1H-pyrimido[4,5-b][1,4]diazepin-6-one (3g).

This compound had ms: (70 eV) m/z (%) = 398/396 (40/100, M⁺', Cl isotope pattern), 383/381 (10/29, M⁺'-CH₃, Cl isotope pattern), 294/292 (12/30, M⁺'-C₆H₅CNH), 156 (27, C₅H₆N₃OS⁺), 138 (27), 104 (26, C₆H₅CNH⁺).

Anal. Calcd. for $C_{20}H_{17}ClN_4OS$: C, 60.52; H, 4.32; N, 14.12. Found: C, 60.38; H, 4.33; N, 14.02.

2,3,6,7-Tetrahydro-4-(4-methoxyphenyl)-8-methylthio-2-phenyl-1H-pyrimido[4,5-b[1,4]diazepin-6-one (3h).

This compound had ms: (70 eV) m/z (%) = 392 (100, M⁺), 377 (20, M⁺-CH₃), 288 (21, M⁺-C₆H₅CNH), 238 (55), 156 (20, C₅H₆N₃OS*), 135 (60), 103 (24, C₆H₅CN⁺).

Anal. Calcd. for $C_{21}H_{20}N_4O_2S$: C, 64.27; H, 5.14; N, 14.28. Found: C, 63.95; H, 5.20; N, 13.98.

2,3,6,7-Tetrahydro-8-methylthio-4-(4-nitrophenyl)-2-phenyl-1H-pyrimido[4,5-b][1,4]diazepin-6-one (3i).

This compound had ms: (70 eV) m/z (%) = 407 (27, M⁺), 252 (95), 206 (21), 178 (25), 131 (63), 103 (100, $C_0H_5CN^{+}$).

Anal. Calcd. for $C_{20}H_{17}N_5O_3S$: C, 58.96; H, 4.21; N, 17.19. Found: C, 58.89; H, 4.40; N, 16.89.

4-(4-Chlorophenyl)-2,3,6,7-tetrahydro-8-methoxy-7-methyl-2-phenyl-1H-pyrimido[4,5-b][1,4]diazepin-6-one (3j).

This compound had ms: (70 eV) m/z (%) = 396/394 (27/100, M^+ , Cl isotope pattern), 381/379 (12/35, M^+ -CH₃, Cl isotope pattern), 292/290 (2/5, M^+ -C₆H₅CNH, Cl isotope pattern).

Anal. Calcd. for C₂₁H₁₉ClN₄O₂: C, 63.88; H, 4.85; N, 14.19. Found: C, 63.81; H, 4.70; N, 13.95.

2,3,6,7-Tetrahydro-8-methoxy-7-methyl-2-(4-methylphenyl)-4-(4-nitrophenyl)-1H-pyrimido[4,5-b][1,4]diazepin-6-one (3k).

This compound had ms: (70 eV) m/z (%) = 419 (37, M⁺), 404 (20, M⁺-CH₃), 301 (33, M⁺-C₆H₅CNH), 155 (30), 118 (100).

Anal. Calcd. for $C_{22}H_{21}N_5O_4$: C, 63.00; H, 5.05; N, 16.70. Found: C, 63.02; H, 4.95; N, 16.51.

4-(4-Chlorophenyl)-2,3,6,7-tetrahydro-7-methyl-8-methylthio-2-phenyl-1H-pyrimido[4,5-b][1,4]diazepin-6-one (31).

This compound had ms: (70 eV) m/z (%) = 412/410 (34/91, M⁺, Cl isotope pattern), 397/395 (11/29, M⁺-CH₃, Cl isotope pattern), 299 (36, M⁺-C₆H₄Cl), 242/240 (21/57), 171 (50), 88 (100).

Anal. Calcd. for $C_{21}H_{19}ClN_4OS$: C, 61.38; H, 4.66; N, 13.63. Found: C, 61.51; H, 4.60; N, 13.35.

2,3,6,7-Tetrahydro-7-methyl-8-methylthio-4-(4-nitrophenyl)-2-phenyl-1*H*-pyrimido[4,5-*b*][1,4]diazepin-6-one (**3m**).

This compound had ms: (70 eV) m/z (%) = 421 (100, M⁺), 405 (26, M⁺·-CH₃), 299 (26, M⁺·-C₆H₄NO₂), 171 (42), 88 (60).

Anal. Calcd. for $C_{21}H_{19}N_5O_3S$: C, 59.84; H, 4.54; N, 16.62. Found: C, 59.64; H, 4.41; N, 16.80.

Acknowledgment.

We are grateful to COLCIENCIAS for financial support.

REFERENCES AND NOTES

- [1] A. Nawojski and W. Nawrocka, Rocz. Chem., 51, 2117 (1977); Chem. Abstr., 88, 136578u (1978).
- [2] F. G. Yaremenko, V. D. Orlov, N. N. Kolos and V. F. Lavrushin, Khim. Geterotsikl. Soedin., 848 (1979).
- [3] V. D. Orlov, J. Quiroga and N. N. Kolos, Khim. Geterotsikl. Soedin., 363 (1987).
 - [4] B. Insuasty, R. Abonia and J. Quiroga, An. Quim., 88, 718 (1992).
- [5] V. D. Orlov, N. N. Kolos, J. Quiroga, Z. Kaluski, E. Figas and A. Potekhin, Khim. Geterotsikl. Soedin., 506 (1992).
- [6] B. Insuasty, R. Abonia, J. Quiroga and H. Meier, J. Heterocyclic Chem., 30, 229 (1993).
- [7] J. T. Sharp in Comprehensive Heterocyclic Chemistry, Vol 7, A. R. Katritzky, C. W. Rees and W. Lwowski, eds., 1984, p 593 and references therein.
- [8] A. Chimirri, R. Gitto, S. Grasso, A.-M. Monforte, G. Romeo and M. Zappala, *Heterocycles*, **36**, 601 (1993) and references therein.
- [9] L. A. Yanovskaya, G. V. Kryshtal and V. V. Kulganek, *Usp. Khim.*, 53, 1280 (1984).
- [10] V. D. Orlov, I. Z. Papiashvili and P. A. Grigorov, Khim. Geterotsikl. Soedin., 671 (1983).
 - [11] E. S. Petrov, Usp. Khim., 52, 1974 (1983).
- [12] E. Bosch, J. Guiteras, A. Izquierdo and M. D. Prat, *Anal. Letters*, 21, 1273 (1988).